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Abstract

Background: Allele-specific transcriptional regulation, including of imprinted genes, is essential for normal mammalian
development. While the regulatory regions controlling imprinted genes are associated with DNA methylation (DNAme)
and specific histone modifications, the interplay between transcription and these epigenetic marks at allelic resolution
is typically not investigated genome-wide due to a lack of bioinformatic packages that can process and integrate
multiple epigenomic datasets with allelic resolution. In addition, existing ad-hoc software only consider SNVs for
allele-specific read discovery. This limitation omits potentially informative INDELs, which constitute about one fifth
of the number of SNVs in mice, and introduces a systematic reference bias in allele-specific analyses.

Results: Here, we describe MEA, an INDEL-aware Methylomic and Epigenomic Allele-specific analysis pipeline
which enables user-friendly data exploration, visualization and interpretation of allelic imbalance. Applying MEA
to mouse embryonic datasets yields robust allele-specific DNAme maps and low reference bias. We validate
allele-specific DNAme at known differentially methylated regions and show that automated integration of such
methylation data with RNA- and ChIP-seq datasets yields an intuitive, multidimensional view of allelic gene
regulation. MEA uncovers numerous novel dynamically methylated loci, highlighting the sensitivity of our pipeline.
Furthermore, processing and visualization of epigenomic datasets from human brain reveals the expected allele-specific
enrichment of H3K27ac and DNAme at imprinted as well as novel monoallelically expressed genes, highlighting MEA’s
utility for integrating human datasets of distinct provenance for genome-wide analysis of allelic phenomena.

Conclusions: Our novel pipeline for standardized allele-specific processing and visualization of disparate epigenomic
and methylomic datasets enables rapid analysis and navigation with allelic resolution. MEA is freely available as a Docker
container at https://github.com/julienrichardalbert/MEA.
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Background
Next-generation sequencing (NGS)-based approaches for
genome-wide analysis of RNA, histone post-translational
modifications (PTMs), DNA methylation (DNAme) and
chromatin conformation are now routinely conducted on
both model organisms and human samples. Such studies
have yielded many insights into the interplay between

chromatin structure and transcription, including the
surprising observation that allele-specific phenomena
may be more widespread than previously believed [1, 2].
Unfortunately, while such datasets, including RNA se-
quencing (RNA-seq), chromatin immunoprecipitation
followed by sequencing (ChIP-seq) and whole genome
bisulphite sequencing (WGBS), are theoretically amen-
able to allele-specific profiling, NGS analysis software
generally does not discriminate between parental alleles
from diploid genomes. Indeed, popular read aligners
depend on alignment to a single reference genome,
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essentially considering the sequencing reads generated
from autosomes (and the X-chromosome in the case of
females) as originating from isogenic rather than outbred
individuals. In merging both parental alleles into a single
measurement, these aligners neglect allele-specific phe-
nomena, such as genomic imprinting [1], X-chromosome
inactivation [2] and sequence-dependent cis-regulatory
effects [3].
To overcome this shortcoming, a number of software

packages have recently been developed that assign NGS
sequencing reads to a specific parental allele. For example,
MMSEQ [4], QuASAR [5], MBASED [6] and SCALE [7]
were designed to analyze RNA-seq data, while MethPipe
[8], epiG [9] and BSPAT [10] were designed to process
DNAme data. Several independent custom scripts for
allele-specific analyses have also been reported [11–13],
but the details required for implementing them were not
included. Pipelines such as Allelome.PRO [14], WASP
[15] and our previously published toolbox, ALEA [16]
accommodate both RNA- and ChIP-seq datasets, yet
no pipeline offers the additional capability of processing
DNAme data. The lack of a universal allele-specific pipe-
line has precluded robust integration of allele-specific
transcription, histone PTMs and DNAme profiles. Import-
antly, while such pipelines can be applied in parallel to
analyze distinct epigenomic features, installation and im-
plementation of multiple software packages can be time
consuming, even for experienced bioinformaticians. Add-
itionally, comparing allelic results generated using differ-
ent software can introduce confounding factors, as the
strategies used to process reads depend on multiple pa-
rameters, including read trimming, alignment mismatch
scoring and read alignment filtering (mapping quality,
PCR duplicate reads). For example, several allele-specific
analysis packages rely on reference genome alignment
followed by variant calling [8, 10, 14], while others lever-
age publicly available single nucleotide variant (SNV) data
to derive a diploid genome for read alignment [5, 15, 16].
This “pseudogenome” strategy is a significant improve-
ment over the former as it enables alignment over loci
with high levels of genetic variation. However, current
pipelines exclude short insertions and deletions (INDELs)
for pseudogenome reconstruction, as they modify refer-
ence chromosome sequence lengths and annotated gene
coordinates required for downstream analyses. Given the
relative abundance of INDELs, this shortcoming may lead
to the omission of a significant fraction of informative al-
lelic reads. Indeed, analysis of high quality genotyping in-
formation for mouse strains reveals that, exclusive of
structural variants, INDELs compose up to 20% of genetic
variation [17]. Thus, an INDEL-aware allele-specific
pipeline that considers both SNVs and INDELs for
pseudogenome reconstruction would offer a significant
improvement over existing software.

Here, we present MEA, an “all-in-one” bioinformatics
toolbox that exploits both SNVs and INDELs to enable
allele-specific analyses of RNA-seq and ChIP-seq as well
as WGBS datasets generated using short-read sequen-
cing technology (Fig. 1a). MEA is shipped in a Docker
container, enabling one step installation of all dependen-
cies independent of operating system type. After provid-
ing a reference genome assembly (e.g. hg19 or mm10)
and a VCF file containing the relevant genetic variants,
users simply input an NGS dataset in FASTQ format.
MEA will then automatically generate allele-specific gen-
omic coverage files in BigWig format and allele-specific
analyses over user-defined regions of interest in a tab-
delimited table. To benchmark the performance of our
INDEL-aware software, we present both theoretical and
real-world evidence for improved allele-specific DNAme
analysis relative to an INDEL-agnostic pipeline. Further-
more, to highlight the utility of MEA, we investigate
DNAme data processed in parallel with RNA- and
ChIP-seq data from mouse hybrid embryos and uncover
novel differentially methylated regions (DMRs). Add-
itionally, using human brain cell data, we observe the ex-
pected H3K27ac and DNAme enrichment at known
imprinted genes and uncover novel monoallelically
expressed genes, further demonstrating the power of in-
tegrating epigenetic and expression analyses in a unified
workflow. The MEA toolbox harmonizes NGS read pro-
cessing, with all dependencies consolidated in a Docker
container, includes pan-species compatibility, maxi-
mizing its utility for allele-specific profiling of model
organisms as well as human samples.

Implementation
To generate a harmonized workflow for processing of
DNAme, RNA-seq and ChIP-seq datasets, we developed
a universal strategy for detecting allele-specific reads.
Further, to maximize the number of experimental reads
that can be assigned to a specific allele for each data
type, MEA was designed to exploit underlying genetic
variation by incorporating both SNVs and INDELs during
pseudogenome construction. For each data type, allelic
reads are captured by constructing an in silico pseudo-
genome comprised of both parental genomes followed
by NGS read alignment. Aligning reads simultaneously
to both haplotype sequences of a diploid genome facili-
tates the appropriate alignment of reads that map to
heterozygous loci onto their cognate allele, reads which
otherwise would be discarded due to “sequencing er-
rors”. Such reads are thus extracted and can be used to
de-convolute allelic phenomena.

An allele-specific DNA methylation pipeline
To establish a pipeline for allele-specific DNAme ana-
lysis, we began by incorporating Bismark [18], a widely
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adopted bisulphite-seq read aligner and methylation
caller, into ALEA, our previously developed tool for
allele-specific analyses of RNA-seq and ChIP-seq data-
sets [16]. We first quantified the hypothetical increase in
the percentage of informative CpG sites from which we
can infer allelic information by incorporation of INDELs
in addition to SNVs during pseudogenome reconstruc-
tion. As high-quality genetic variation information of
inbred mouse strains is available [19], we constructed a
pseudogenome from two mouse strains, namely DBA/
2 J and the reference strain C57BL/6 J (build mm10),
incorporating known genetic variants (SNVs and/or
INDELs). By counting CpGs within 200 bp (an insert
size typical of WGBS libraries) of an INDEL or SNV,
we found that INDEL incorporation leads to a theoret-
ical increase in the number of informative CpGs (i.e.
CpGs for which DNAme differences between alleles
can be deduced) of 12.9% for this pseudogenome (Fig. 1b).
Notably, a subset of genomic regions with associated
INDELs are entirely devoid of SNVs and therefore include
nearby CpGs that theoretically can only be assessed by
pipelines that are “INDEL-aware”.

Results
MEA is informative for significantly more CpGs than an
INDEL-agnostic script
To test whether the inclusion of INDELs increases the
number of informative CpGs for which allelic methylation
state can be calculated in practice, we processed raw reads
from a previously published WGBS dataset from C57BL/6 J
x DBA/2 J mouse F1 inner cell mass (ICM) cells [11]. Ap-
plying the same filtering parameters allowed us to directly
compare results obtained with the MEA pipeline to those of
the Bismark-based INDEL-agnostic custom script employed
by Wang et al. [11]. MEA yielded a 62.5% increase in the
number of CpGs covered by at least 5 allele-specific C57BL/
6 J reads (Fig. 1c). Importantly, informative CpGs gained
using MEA overlapped almost exclusively with CpGs within
200 bp of an INDEL or SNV, as expected. This gain is likely
the result of an increase in the number of informative het-
erozygous sites (quantified in Fig. 1b) as well as efficacious
alignment of reads to the non-reference genome over re-
gions with high INDEL density.
Reads from regions with high INDEL density were pre-

sumably excluded by the pipeline from Wang et al. [11] as

Fig. 1 A bioinformatics toolkit for allele-specific epigenomic analysis. a MEA pipeline flow chart. Supplied with a reference genome assembly and
relevant genetic variants, MEA first reconstructs a diploid pseudogenome. Subsequently, allele-specific analysis is performed on the input gene
expression (RNA-seq), histone PTM (ChIP-seq) or DNAme (WGBS) data in FASTQ format. MEA calculates allelic imbalance values using the resulting
allele-specific genomic coverage files and generates a tab-delimited table for the user-defined regions of interest. Mouse and human exon, gene
body and transcription start site coordinates are provided to facilitate analyses of such regions. b Venn diagram showing the theoretical number of
CpG dinucleotides for which allele-specific DNAme levels can be calculated using C57BL/6 J and DBA/2 J SNVs (blue) or INDELs (green) alone. CpGs for
which allelic information can theoretically be extracted are defined as those that fall within 200 bp (an insert size typical of WGBS libraries) of a genetic
variant. c Venn diagram showing the observed number of C57BL/6 J-specific CpG dinucleotides for which allele-specific DNAme levels were calculated
using MEA (yellow) versus an INDEL-agnostic contemporary allele-specific DNAme script [11] using the same dataset (red)
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“sequencing errors”, rather than assigned as allelic variants.
To confirm that MEA increases the alignment rate of
non-reference reads, we repeated the alignment of C57BL/
6 J x DBA/2 J F1 WGBS reads to a reference genome as
well as the MEA-constructed diploid pseudogenome (com-
posed of the reference and DBA/2 J genomes) and deter-
mined the number of reads that aligned to each genome 0,
1 or > 1 time (Fig. 2a-b). Alignment to a pseudogenome in-
creased the overall alignment rate by 1.25% (80.83 to
82.08%), most likely due to alignment of
non-reference-originating reads at loci that show signifi-
cant genetic divergence (high SNV and INDEL density)
from the reference. As expected, the majority of reads
aligned uniquely to the haploid reference genome aligned
at least twice to the pseudogenome, except over regions
containing genetic variants. This crucial distinction allowed
the uniquely aligned reads to be extracted and assigned to
their cognate parental genomes, with 8.8 and 8.2% of
all aligned reads specific to C57BL6J and DBA/2 J
strains, respectively (Fig. 2c). By capturing a greater
number of sites at which we can measure allelic DNAme
levels, a higher proportion of experimental reads can be
assigned to a specific parental haplotype, thus enabling
the evaluation of allelic differences in DNAme levels for a
higher fraction of the genome.

MEA significantly reduces reference genome alignment bias
A major concern when exploring allele-specific data is the
potential for reference bias caused by differences in gen-
omic sequence quality between the reference and non-ref-
erence genomes, which may lead to preferential
alignment of reads to the former and artefactual allelic im-
balance results [20]. For example, using an INDEL-agnostic
pipeline similar to that employed by Wang et al. [11],
Keown et al, reported a reference bias of 15.4% in their
study of allele-specific DNAme in C57BL/6 J x SPRET/EiJ
cells [21] (SPRET/EiJ has > 5 times the number of SNVs
relative to C57BL/6 J than does DBA/2 J [19]). To deter-
mine the extent of reference bias in our MEA pipeline, we
benchmarked the observed parental contribution to allelic
read alignment for each autosome from the C57BL/6 J x
DBA/2 J ICM WGBS dataset generated by Wang et al. [11]
(Fig. 2d). Notably, MEA yielded an alignment reference bias
on all autosomes of 3.81%, only ~ 54% of that reported by
the INDEL-agnostic pipeline (6.98%, Fig. 2e). This re-
duction in alignment bias is consistent with the increased
fraction of allele-specific reads aligned to the non-reference
genome.

Estimation of allele-specific alignment error rate using
isogenic mice
False positives caused by erroneous allelic read alignment
at regions devoid of true genetic variation can lead to an
underestimation of reference bias in allele-specific

experiments. To quantify the false positive allelic align-
ment rate of our pipeline, we processed pure C57BL/6 J
WGBS data using the C57BL/6 J x DBA/2 J pseudogen-
ome described above and determined the parental contri-
bution to allelic read alignment (Fig. 3a). Curiously, 0.8%
of all aligned reads (5.13% of allelic reads) were scored
as DBA/2 J-specific, indicating that MEA has an FDR
of ~ 5%. When calculating the parental contribution to
allelic read alignment over each autosome, we found
that the majority of false-positive (“DBA/2 J-specific”) al-
lelic read alignments clustered on chromosomes 2 and 9
(Fig. 3b). Closer inspection revealed that these regions are
annotated by RepeatMasker as Satellite DNA (Fig. 3c).
Such allele-specific calls at sites lacking genetic variants
are the result of Bismark’s mapping quality algorithm,
which calculates an erroneously high mapping score at
these highly repetitive regions. Analysis of processed
WGBS data from pure DBA/2 J spermatozoa without
black-listing of repetitive regions revealed a C57BL/6 J-spe-
cific alignment rate of 3.80% (Additional file 1: Figure S1),
indicating that a global false positive rate of ~ 5% may be
expected when using the MEA pipeline for analysis of
WGBS data without excluding repetitive regions. Since
satellite DNA is generally omitted in studies of the tran-
scriptome or epigenome, we excluded reads aligned to an-
notated satellite repeats (0.19% of the mappable genome)
and recalculated the false-positive rate for the C57BL/6 J
dataset, which dropped to 1.62% of allelic reads, with no
specific chromosome enriched (Fig. 3d). Thus, when ap-
plying the MEA pipeline, the majority of false positive
read alignments can likely be removed by black-listing sat-
ellite repeats.

MEA reports the expected allelic imbalance in DNA
methylation at known gametic differentially methylated
regions (gDMRs)
To establish the accuracy of calculating allele-specific
DNAme levels using the MEA pipeline, we measured
allele-specific DNAme levels over known imprinted gDMRs.
Such regions are densely methylated on one allele and
unmethylated on the other as a result of parent-of-origin
dependent differences in methylation established in the
gametes, representing a unique resource for benchmarking
allele-specific DNAme calling. Of the 23 known mouse
gDMRs, 9 harbor SNVs and/or INDELs between the
C57BL/6 J and DBA/2 J genomes and can therefore be
assessed for allele-specific DNAme levels. For consistency,
we directly compared our allele-specific results over these
regions with those reported by Wang et al. [11] (Fig. 4a).
For most gDMRs, MEA yielded average allelic DNAme
levels similar to those reported by the INDEL-agnostic
pipeline. However, MEA consistently yielded allele-specific
information over a greater number of CpGs (mean ± SD:
72 ± 24 vs 38 ± 21 CpGs on either allele), increasing the
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Fig. 2 (See legend on next page.)
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statistical power of allelic imbalance calculations. For ex-
ample, MEA detected a total of 68 CpGs informative for
allelic methylation state at the Meg3 gDMR, nearly three
times greater than the number reported by Wang et al.
(Table 1). As expected, when calculated over the same 129
CpGs covered by at least five reads in the gDMR, DNAme
levels calculated by the two pipelines independent of allelic
calling were nearly identical (30.2% vs 30.6%). However,
the discordance between the percentage of methylation

calculated for the CpGs that are informative at an allelic
level was significantly lower using the MEA pipeline
(0.13% vs 5.8%), indicating that the accurate determination
of allelic DNAme levels at specific loci can be adversely im-
pacted by sampling errors. Furthermore, as expected, only
the MEA pipeline yields informative results for CpGs
proximal to INDELs at the Meg3 gDMR locus (Fig. 4b),
confirming the benefit of incorporating the latter during
pseudogenome reconstruction. Taken together, these

(See figure on previous page.)
Fig. 2 Empirical benchmarking of allele-specific read alignment reveals reduced reference bias. a Graphical representation of MEA’s unified strategy for
detecting allele-specific reads from RNA-, ChIP-seq and WGBS datasets. Aligning F1 hybrid reads to a pseudogenome enables alignment to their cognate
genome even when originating from highly variable loci. b Paired-end WGBS reads (101 bp) from a previously published dataset of C57BL/6 J x DBA/2 J
ICM cells [11] were aligned using the Bismark aligner to the (haploid) reference genome (mm10 build) and a MEA-constructed diploid pseudogenome.
When using MEA, multiple (2 or more) alignments reflect non-allelic reads, while uniquely aligned reads are allele-specific. Reads aligning uniquely to the
pseudogenome were extracted and retroactively assigned to their parental haplotype. c The percentages of allele-specific reads called for each parental
haplotype and the number of aligned reads that did not overlap with a genetic variant (non-allelic) is shown. d Allelic contribution of read alignments to
each parental haplotype (C57BL/6 J or DBA/2 J) on each autosome. Relative to the script employed by Wang et al. [11], MEA displays about
half the reference bias on the majority of autosomes. e Global reference bias for each pipeline is shown

c d

a b

Fig. 3 Quantifying allele-specific alignment error rates. To estimate the rate of false-positive errors for allelic analysis of DNAme data, WGBS
reads generated from C57BL/6 J mice [11] were aligned to the MEA-generated C57BL/6 J x DBA/2 J pseudogenome, and the percentage of
DBA/2 J-specific read alignments was scored. The expected allelic contribution from C57BL/6 J is 100%, as these cells are of C57BL/6 J origin.
a The percentages of reads aligning uniquely to the C57BL/6 J and DBA/2 J (false-positive) pseudogenomes, as well as the number of aligned
reads that did not overlap with a genetic variant (non-allelic) is shown. b The false-positive alignment rate for each autosome, along with the
total number of aligned allelic read pairs, is shown. c Genome browser screenshot of a locus that displays a high rate of false-positive allele-
specific alignment to a repeat annotated as Satellite DNA by RepeatMasker and devoid of genetic variants. d To assess the false-positive rate
exclusive of repetitive Satellite DNA, allele-specific read alignments over these Repbase annotated repetitive sequences, as recognized by
RepeatMasker, were culled and the rate of false-positive allele-specific alignments recalculated over each autosome as in (b)
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Fig. 4 Validation of allele-specific DNA methylation level calculations over known gDMRs. C57BL/6 J x DBA/2 J ICM WGBS reads were processed
in parallel with MEA and a published pipeline [11] using identical parameters. a Allelic methylation levels over 9 known gDMRs are shown for both
pipelines. b UCSC genome browser screenshot of the Meg3 gDMR including the allele-agnostic percentage of DNAme calculated using each pipeline
(total) as well as allelic calls for each informative CpG. The location of each informative CpG for each pipeline (blue tracks) is also included. Only MEA
detects allele-specific reads in a region within the gDMR that lacks SNVs but contains several INDELs (dashed box). A summary of the total number of
allelic CpG counts and DNAme levels over this locus is included in Table 1

Table 1 Allele-specific DNA methylation level analysis over the Meg3 gDMR
Pipeline Allelic call CpGs covered Mean Methylation (%)

MEA – 129 30.24

C57BL/6 J 31 1.66

DBA/2 J 37 58.55

Total allelic informative 68 30.11

Wang et al. (Table S7) – 129 30.63

C57BL/6 J 12 1.59

DBA/2 J 12 48.09

Total allelic informative 24 24.84
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analyses demonstrate that MEA outperforms an INDEL-
agnostic pipeline.

MEA uncovers novel putative transient DMRs at
annotated transcription start sites (TSSs)
A recent study employing MeDIP on genomic DNA iso-
lated from early mouse embryos revealed the presence
of maternally-methylated DMRs that are resolved during
post-implantation development [22]. While these “tran-
sient DMRs” may have important biological functions
during pre-implantation development [22, 23], the ex-
tent of transient imprinting remains unclear. To deter-
mine whether MEA can be used to identify novel DMRs,
we assayed the subset of informative regions gained
using our refined pipeline, namely loci exclusively over-
lapping INDELs, using the aforementioned WGBS data
from C57BL/6 J x DBA/2 J ICM cells. As expected for
preimplantation cells, which are characterized by glo-
bally low DNAme levels [24], hypomethylation of both
parental alleles was generally observed over such inform-
ative regions, including at those with high CpG density
(Fig. 5a). Importantly, analysis agnostic to allelic align-
ment also revealed hypomethylation across such regions
(for example, see Additional file 1: Figure S2). However,
focusing on regions within 200 bp of annotated tran-
scription start sites (TSSs) reveals that a subset show
clear asymmetric DNAme levels (Fig. 5b), with either
maternal or paternal bias.
UCSC genome browser screen shots of two putative

TSS proximal DMRs, including the apparently paternally
methylated Kiss1 (a suppressor of metastasis) and mater-
nally methylated Lpar6 (a lysophosphatidic acid recep-
tor) genes, are shown in Fig. 5c and d. Using the MEA
pipeline, 15 and 34 CpGs respectively, are informative
on either allele at these loci. Importantly, the absolute
methylation levels reported by the allele-agnostic pipe-
line (27.2 and 26.5%) are similar to those of the mean
allele-specific methylation (29.4 and 34.6%), consistent
with the observation that methylation at these loci is
allele-specific. Moreover, intersection of these ICM data
with WGBS data from mature gametes [25, 26] reveals
that paternal DNAme at the Kiss1 gene in the former is
likely the result of methylation already present in sperm-
atozoa, indicating that this locus potentially protected
from the wave of genome-wide DNA demethylation that
occurs early in mouse embryonic development [27]. Par-
ental asymmetry at the Kiss1 locus is resolved by E7.5,
when the maternal allele gains DNAme coincident with
the wave of global de novo DNAme that occurs during
early post implantation development [28]. On the other
hand, the short, intron-less gene Lpar6 is hypermethylated
in both mature oocytes and spermatozoa, indicating that
the paternal but not the maternal allele is susceptible to
the global wave of DNAme erasure that takes place after

fertilization. Parental asymmetry of DNAme is resolved by
loss of maternal DNAme in the E7.5 post-implantation
embryo, revealing that the allelic bias in DNAme at this
locus is also transient but involves sequential loss of
DNAme on the paternal followed by the maternal allele.
Whether these non-canonical DNAme dynamics are
driven by genetic or parent-of-origin effects, and their
contribution to the development of the early embryo,
remains to be tested. Regardless, the novel DMRs iden-
tified proximal to the Kiss1 and Lpar6 TSSs exemplify
the merit of increasing the number of allelic reads ex-
tracted from experimental datasets and underscores the
potential for future discoveries using this approach.

Comparison of RNA- and ChIP-seq read aligners using the
MEA pipeline
In order to integrate epigenomic and transcriptomic-
based datasets, alignment to the same genomic sequence
is required. Transcriptomic data presents a unique
challenge when aligning to a genome, as processed
messenger RNA contains many gaps (introns) relative
to the template DNA sequence. In our previously pub-
lished pipeline ALEA [16], RNA-seq alignment was car-
ried out using the short-read aligner BWA, which does
not allow alignment of intron-spanning reads. Thus, to
enable integration of transcriptomic and epigenomic
datasets, gapped read alignment is essential. Tophat2
[29] and STAR [30], two widely used aligners that in-
corporate this feature, were recently shown to perform
well in short-read RNA-seq alignment [31]. To deter-
mine which of the two shows superior allele-specific
gapped read alignment, we carried out a side by side
comparison of these aligners, as well as the non-gapped
read aligner BWA, using a published RNA-seq dataset
from C57BL/6 J x DBA/2 J F1 ICM cells. STAR clearly
outperformed both Tophat2 and BWA (Fig. 6a), likely
due to its advanced gapped read alignment algorithm
[30] and ability to properly assign paired-end reads as-
sociated with the same DNA molecule (if a read aligns
to a region including a genetic variant, its mate is also
identified as allelic regardless of whether it overlaps a
genetic variant). Thus, analysis of paired-end sequencing
data using the STAR aligner and MEA pipeline increases
the fraction of regions showing relatively high sequence
conservation over which allele-specific NGS reads can be
aligned, an improvement over using flanking regions as a
proxy. Based on these observations, we currently rec-
ommend the STAR aligner, but MEA’s flexibility in in-
corporating new NGS aligners facilitates its adoption
for analyzing epigenomic and expression datasets using
alternative/next generation aligners, such as those that
can accommodate increased read lengths.
In our previously published pipeline ALEA [16], allele-

specific alignment of ChIP-seq datasets was limited to
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Fig. 5 Identification of novel DMRs using the MEA pipeline. Allele-specific DNAme levels were calculated over 133,065 regions containing INDELs
but lacking SNVs (representing novel informative regions gained employing MEA) using C57BL/6 J x DBA/2 J ICM WGBS data [11]. a Maternal
versus paternal DNAme levels and CpG density (data point size) are plotted for informative regions overlapping with at least 10 CpGs from which
allele-specific DNAme levels can be ascertained (746 data points). b CpG density (data point size) and allele-specific DNAme levels are shown, as
in (a) over the subset of novel informative regions +/− 200 bp from annotated TSSs (with at least five informative CpGs on both alleles).
Representative novel informative regions for which screenshots are provided are circled in red. c-d UCSC genome browser screenshots of differentially
methylated regions (dashed boxes) near the promoters of the Kiss1 and Lpar6 genes. Tracks from Wang et al. [11] are included to illustrate differences
in pipeline sensitivity. DNAme tracks of male and female germ cells [25, 26] as well as E7.5 embryos [11] are also shown, along with the location of
informative CpGs (highlighted in blue)
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Fig. 6 Validation of allele-specific transcription level calculations and integration with ChIP-seq and WGBS datasets at allelic resolution. MEA was
extended to accommodate contemporary RNA-seq aligners and to automatically organize allelic and total genomic tracks into UCSC Track Hubs
to aid data visualization and interpretation. a The number of annotated genic exons covered by allelic reads using BWA, Tophat2 and STAR aligners is
shown for an RNA-seq dataset generated from C57BL/6 J x DBA/2 J ICM cells [48]. b UCSC genome browser screenshot of the Meg3 gDMR and
downstream gene using the default MEA output for visualization of allelic (WGBS, RNA- and ChIP-seq) data. MEA automatically generates composite
tracks containing total (allele-agnostic, grey), reference (blue) and non-reference (red) genomic tracks for visualization of allelic RNA- and ChIP-seq
datasets. Bottom three tracks show MEA output from previously published C57BL/6 J x PWK/PhJ F1 ICM ChIP-seq data [13, 47]
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the BWA-aln algorithm. To enhance MEA’s flexibility,
we incorporated another popular ChIP-seq aligner
Bowtie2. To compare the performance of BWA-aln
and Bowtie2 for allele-specific ChIP-seq alignment, we
processed H3K4me3 ChIP-seq data generated from pure
C57BL/6 J and PWK/PhJ gametes [13]. While both align-
ment algorithms yield a low false-positive alignment rate of
~ 0.2–4.8%, BWA-aln clearly reports more allele-specific
read alignments than Bowtie2 (Additional file 1: Figure S3
and Additional file 2: Table S1). Thus, while users can
choose between BWA-aln and Bowtie2, we recommend
the former for allele-specific analysis of ChIP-seq data
using MEA.

Integration of WGBS, RNA-seq and ChIP-seq datasets using
the MEA pipeline
Dissecting the interplay between epigenetic marks and
transcription was greatly facilitated by the advent of
NGS-based approaches for measuring RNA levels and
the genome-wide distribution of DNAme and histone
PTMs. However, as such datasets are commonly processed
using different pipelines, integrating and visualizing allelic
information embedded therein is non-trivial. To automate
dataset integration, MEA processes WGBS, RNA- and
ChIP-seq alignment data using the same allele-specific read
identification strategy, yielding standardized allele-specific
genomic tracks. This unification of file types allows simul-
taneous visualization of each datatype (in BigWig format)
using popular genome browsers. Further, to automate the
process of reporting allelic imbalance, MEA generates a
tab-delimited table containing allelic imbalance mea-
surements over user-defined regions of interest, such as
transcription start sites, genic exons or gene bodies (see
Additional file 3: Table S2).
This approach solves two important considerations in

the presentation of allele-specific data. First, allelic gen-
omic tracks, i.e. those displaying only read coverage that
is informative for allelic alignment, are inherently sparse,
especially at regions devoid of genetic variants. To de-
lineate signal from noise, allele-specific genomic track
visualization should be considered in the context of all
aligned reads and the position of the genetic variant
sites. Second, allele-specific enrichment is greatest at
sites of genetic variation and therefore does not necessar-
ily coincide with the profiles generated from all reads ag-
nostic of allelic assignment. For example, while reads
derived from H3K4me3 ChIP-seq datasets are enriched
over active TSSs, allelic H3K4me3 reads may align any-
where within the set of allele-agnostic peaks. Thus, allelic
reads aligning at the edge of a region of H3K4me3 enrich-
ment that is devoid of genetic variants at its center may be
incorrectly discarded as noise.
The MEA pipeline standardizes such integrated track

visualization by organizing genomic tracks into a UCSC

Track Hub [32]. These hubs agglomerate multiple colour-
coded data tracks, enabling the concurrent visualization
of allele-specific and “total” (allele-agnostic) alignment
profiles, and in turn interpretation of allelic imbalance.
Variant files used for pseudogenome reconstruction can
also be directly visualized as UCSC custom tracks. The
utility of this approach is illustrated using the Meg3
gene and its governing gDMR as a representative locus
(Fig. 6b). Imprinting is simultaneously displayed in four
independent datasets generated from two distinct F1
hybrid crosses. The Meg3 gDMR is paternally methylated
and weakly enriched for both permissive (H3K4me3) and
repressive (H3K27me3) histone PTMs (grey). Interest-
ingly, H3K4me3 and H3K27me3 asymmetrically mark the
maternal and paternal alleles, respectively, as expected for
the promoter of a gene expressed exclusively from the ma-
ternal allele. Notably, each dataset is consistent with pater-
nal imprinting, with repressive marks associated with the
paternal allele and active marks with the expressed mater-
nal allele. Profiles of the maternally imprinted Snrpn and
Impact loci reveal similar patterns (see Additional file 1:
Figures S4 and S5). Note that for the Impact locus, a sin-
gle genetic variant in the F1 hybrid analyzed is sufficient
to score DNAme asymmetry between parental alleles. The
observed enrichment of both H3K4me3 and H3K27me3
at imprinted DMRs is consistent with a previous report
[33], and evidence of H3K4me3 and H3K27me3 enrich-
ment asymmetry on active and repressed alleles has
been documented for individual genes [34]. Thus, the
allele-specific genomic tracks and dataset integration
employed by MEA enhances the visualization of allelic
differences between epigenetic marks and transcription
across the genome.

Application of the MEA pipeline to human WGBS, RNA-seq
and ChIP-seq datasets
To demonstrate the utility of MEA for the study of NGS
datasets from human samples, we used the STAR aligner
to analyze an RNA-seq dataset generated from human
brain tissue. For individuals whose parental genomic se-
quences are unavailable, MEA uses Shape-IT [35] to
phase individual genetic variants into inferred haplo-
types. For each annotated gene, the haplotype-specific
contribution to allelic read alignment was calculated using
MEA (Additional file 3: Table S2). As expected, human
imprinted genes [36] such as MEST, MEG3, PEG3 and
PEG10 display monoallelic expression (Fig. 7a), confirm-
ing the suitability of MEA for the analysis of RNA-seq
data from human samples.
We next generated UCSC Track Hubs to visualize the

RNA-seq data analyzed above, as well as matched DNAme
(WGBS) and histone PTM (cross-linked ChIP-seq) data
from human brain and focused on imprinted genes that
include genetic variants in their exons and respective
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Fig. 7 (See legend on next page.)
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DMRs. Thirteen known imprinted genes were expressed
(RPKM > 1) and had at least 10 allele-specific mapped
read coverage on either allele, 6 of which show > 80% ex-
pression from one allele (see Additional file 3: Table S2).
A screen shot of the imprintedMEST gene, which is pater-
nally expressed in somatic tissues, is shown in Fig. 7b. As
expected, analysis of sperm and oocyte WGBS data from
unrelated individuals reveals a DMR at the MEST TSS
that is methylated exclusively in the oocyte and shows ~
50% methylation across the annotated DMR in adult brain
cells. MEA output reveals one allele with dense methyla-
tion in this region, haplotype 1 (hap1) and the other with
very low methylation (hap2). Importantly, only the latter,
which is transcriptionally active, shows enrichment of
H3K27ac, a histone modification associated with active
genes. Based on allele-specific DNAme, transcription and
histone PTM patterns, we surmise that haplotypes 1 and 2
of the MEST locus were inherited from the proband’s
mother and father, respectively. Taken together, these re-
sults reveal that MEA successfully integrates allele-specific
RNA-seq data with WGBS and ChIP-seq data for identifi-
cation and visualization of human loci harbouring genetic
variants.
To determine whether H3K27ac shows allele-specific

enrichment in the promoter regions of genes exhibiting
allele-specific transcription, we identified all genes that
harbor genetic variants over annotated exons and the
TSS and calculated their allelic ratios (Fig. 8a). While
the correlation between expression and H3K27ac allele-
specific ratios is low (Pearson r2 = 0.29), many genes
displaying strong allele-specific expression bias (over
two standard deviations from the mean) are also enriched
for H3K27ac on the active allele (χ2 test p values for bias to-
wards haplotype 1 = 1.38E -24 and haplotype 2 = 4.8E -38),
as expected. Moreover, manual inspection of a subset
of genes displaying monoallelic expression and biallelic
H3K27ac reveals that transcription originates at alter-
native promoters. To further quantify the relationship
between allele-specific H3K27ac and transcription, we
categorized genes based on allele-specific transcription
bias and measured the distribution of allele-specific
H3K27ac at TSSs (Fig. 8b). Notably, while allele-specific
H3K27ac was positively correlated with transcriptional ac-
tivity, the ChIP-seq input (control) dataset also showed a

higher level of enrichment on the active allele for each
haplotype. This observation is consistent with previous
studies demonstrating that the promoter regions of active
genes are inherently more sensitive to sonication than in-
active genes [37, 38]. That this bias also applies to individ-
ual genes exhibiting allelic differences in expression/PTMs
reiterates the importance of input-correction of ChIP-seq
material and highlights the sensitivity of the MEA pipeline
for quantifying allele-specific differences in enrichment.
To determine whether MEA can be employed to identify

novel monoallelically expressed transcripts in human sam-
ples, we revisited the brain RNA-seq data described above.
Applying thresholds for total expression (RPKM > 1),
allele-specific coverage (mapped reads > 100) and expres-
sion bias (> 90% of transcript levels from one allele), we
identified 222 monoallelically expressed transcripts
(Fig. 7a). Ten of these 222 transcripts showed sufficient
H3K27ac ChIP-seq coverage for allele-specific calling
(total RPKM > 1 and allele-specific CpGs on each allele.
While seven of these transcripts (PIK3R3, ZNF662,
PSMC1, LOC145784, CYP4F24P, C19orf48 and ZNF805)
showed biallelic or minor allele-specific bias in H3K27ac,
perhaps indicative of allele-specific post-transcriptional
regulation, three (MEST, MIR4458HG and PCDHA5)
showed strong H3K27ac bias toward the active allele (>
90% allelic reads). Importantly, the latter represent known
and candidate novel imprinted genes. PCDHA5 belongs to
a large gene family of protocadherins, complicating al-
lelic interpretation. However, analysis of the previously
described imprinted gene MEST (Fig. 7b) and the
uncharacterized non-coding RNA gene MIR4458HG
(Fig. 8c), revealed H3K27ac enrichment and intermediate
methylation at their TSSs. As described above for the
MEST gene, allelic deconvolution at the MIR4458HG pro-
moter using MEA reveals H3K27ac enrichment and the
absence of DNAme exclusively on the active allele. Fur-
thermore, analysis of published WGBS data from gametes
reveals hypomethylation of the MIR4458HG TSS in both
sperm and oocyte, indicating that the allelic gain of
DNAme at this locus occurs in somatic tissues. Thus,
using MEA to integrate complementary RNA-, ChIP-seq
and DNAme datasets allows for the allele-specific reso-
lution of epigenetic states at the regulatory regions of both
known and novel monoallelically expressed genes.

(See figure on previous page.)
Fig. 7 Allelic integration of RNA-, ChIP-seq and WGBS datasets from human brain. a Analysis of allele-specific gene expression using RNA-seq data from
adult human brain. Imprinted genes are highlighted in red and monoallelically expressed genes (defined by total expression (RPKM > 1), allele-specific
coverage (mapped reads > 100) and expression bias (> 90% of transcript levels from one allele)) are highlighted in blue and orange. MEST, an imprinted
gene, is highly expressed in brain and shows the expected allelic bias. b UCSC genome browser screenshot of the MEST locus showing allele-agnostic
(total) and allele-specific (blue and red) DNAme levels in adult brain. DNAme levels in gametes (oocyte & spermatozoa) are also shown [49]. RNA-seq and
H3K27ac ChIP-seq data from human brain were integrated using MEA and allele-agnostic (total) as well as allele-specific coverage is shown for each.
Note that only the expressed allele, haplotype 2 (hap2) is unmethylated and enriched for H3K27ac. Also see Additional file 2: Table S2
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Consolidation of all dependencies into a Docker container
The proper installation and configuration of bioinfor-
matics dependencies is a major hurdle for both new and
experienced users. To address this challenge, we packaged
MEA into a Docker container, an open-source software
packaging and distribution system (see Materials and
Methods). The self-contained nature of the container
allows one-step installation of all 15 bioinformatic de-
pendencies (STAR, bwa, Bedtools, Bowtie2, Tophat2,
Bismark, Java, etc.), providing a consistent user experience
independent of operating system (Windows, MacOS,

Linux, etc.). Furthermore, the consolidation of all MEA
tool installation steps will greatly facilitate future in-
corporation of alternative NGS aligners.

Discussion
The surge of publicly available NGS epigenomic and ex-
pression datasets generated by international consortia,
has outpaced the development and dissemination of bio-
informatic pipelines that can be used to analyze disparate
epigenomic datasets at allelic resolution. To address this
need, we developed a universal pipeline that generates

Fig. 8 Allele-specific transcription, H3K27ac and DNA methylation at the MIR4458HG locus. a Integration of allele-specific gene expression and
promoter H3K27ac enrichment using human brain RNA-seq and matched ChIP-seq datasets. Only transcripts with informative allele-specific RNA-seq
coverage over exons and ChIP-seq coverage over TSSs (+/− 300 bp) are shown (n = 1759). b Distribution of H3K27ac and input/control allelic ratios at
TSSs of transcripts expressed from one or both alleles. Note the allelic ratio bias even in the input control. c UCSC genome browser screenshot of the
MIR4458HG locus. Only the expressed allele (hap2) is enriched for H3K27ac and hypomethylated at the CpG island promoter
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integrated allele-specific genomic tracks for DNA methy-
lation (WGBS or Reduced Representation Bisulphite Se-
quencing (RRBS)), expression (RNA-seq) and histone
modification (ChIP-seq) data. Using a unique strategy
that incorporates INDELs in addition to SNVs during
pseudogenome reconstruction, MEA increases the
quality of non-reference genomic sequences, yielding a
reduction in reference genome alignment bias. Addition-
ally, in the case of mouse datasets, false positive
allele-specific alignments can be minimized by excluding
satellite repeats from post-alignment analysis. By consider-
ing INDELs and SNVs, MEA captures significantly more
allelic CpGs than an INDEL-agnostic script and in turn in-
creases the sensitivity of allele-specific, parent-of-origin
DNAme level calculations. Furthermore, by implementing
RNA-seq aligners developed specifically to address spliced
read alignment, such as STAR [30], MEA reports
allele-specific expression over a greater proportion of the
transcriptome relative to other aligners.
The fraction of the genome for which allele-specific

state can be calculated is a function of several experimen-
tal variables, including the choice of parental strains in the
case of F1 hybrid studies in model organisms. We were
able to measure allele-specific DNA levels over 20.4% of
all CpGs in C57BL/6 J x DBA/2 J F1 hybrid mice. The
DBA/2 J strain is quite similar genetically to the reference
C57BL/6 J, containing on average one SNV per 530 bp
(0.19%), at the lower limit of the optimal sequence diver-
gence range of 0.1 to 5% for genome-wide allelic analysis
[37]. Wild and inbred mouse strains such as PWK/PhJ,
CAST/EiJ or SPRET/EiJ are up to eight times more diver-
gent than commonly used strains, such as DBA/2 J,
129S1/SvImJ and C3H/HeJ [19]. Thus, when crossed with
any other strain, such F1 hybrids will yield a significant in-
crease in the fraction of informative reads. Regardless of
parental genome diversity, the incorporation of INDELs in
addition to SNVs during pseudogenome reconstruction,
as implemented in MEA, significantly increases the num-
ber of regions over which allele-specific methylation can
be discerned. For strains with available SNV and INDEL
annotations, such as those provided by the Sanger Insti-
tute’s Mouse Genomes Project [17], the average genetic
variant frequency between parental genomes can easily be
calculated, and in turn, the fraction of the genome likely
to be informative for discriminating allele-specific reads
determined a priori.
By increasing the number of allele-specific reads ex-

tracted from NGS datasets of outbred individuals, including
F1 hybrid model organisms as well as human subjects,
MEA enables the identification of novel DMRs in WGBS
data, allelic-specific gene expression from RNA-seq data
and the discrimination of histone marks showing
parent-of-origin specific patterns from true bivalent marks
by ChIP-seq. As this toolbox was developed to process

next generation sequencing reads regardless of experi-
ment type, MEA can also be used to analyze additional
chromatin features with allelic resolution. For example,
to map chromatin accessibility at an allelic level,
DNase I hypersensitivity site-sequencing (DNase-seq,
[38]) or transposase-accessible chromatin followed by
high-throughput sequencing (ATAC-seq, [39]) datasets
can be interrogated and the results integrated with the
data types described above. Importantly, if allele-specific
resolution is desirable, previously generated datasets using
any of these approaches can be revisited using MEA.
While MEA can be applied to datasets generated from

any diploid organism, there are several important limita-
tions that must be considered for clinical studies. As
each individual has a unique diploid genome (except in
the case of monozygotic twins), pseudogenome reconstruc-
tion is essential. While MEA exploits publicly available
whole genome sequencing datasets from the Sanger Insti-
tute’s Mouse Genomes Project [17] and the human-focused
1000 genomes project [40], additional genotyping and var-
iant-calling steps will be required for haplotypes not
covered by these population level sequencing projects.
Nevertheless, large-scale efforts such as The Cancer
Genome Atlas (TCGA) project that harmonize various
cancer-related dataset types, including genotype infor-
mation, may be analyzed using MEA to deconvolute
complex relationships that may operate at an allele-spe-
cific level. For example, a recent publication combined
genetic, DNAme and gene expression variation to explain
aberrant gene regulatory networks in thyroid carcinoma
samples [41]. Given the high frequency of heterozygous
somatic mutations in many cancer types, MEA may be ap-
plied to directly measure the effect of these mutations on
DNAme and gene expression levels on the same allele by
using the other allele as a control, potentially allowing for
the identification of additional driver mutations. Since in
silico diploid genome sequences are twice as large as their
respective reference assemblies, such population-based
studies (encompassing thousands of individuals) will re-
quire extensive computational infrastructure. These tech-
nical restrictions limit the number of unique individuals
that can be practically evaluated. Therefore, for studies
encompassing large outbred populations, an alternative
approach that combines genotyping and allele-specific
read calling is more suitable [42]. Nevertheless, for
smaller scale epigenomic studies, such as those involving
trios, MEA can be applied to study the role of genetics in
epigenetic variation, and in turn, to facilitate the discovery
or validation of variants of interest, complementing
epigenome-wide association studies (EWAS) [43].

Conclusions
To our knowledge, MEA is the first software package to
provide integrated allele-specific analysis of DNA
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methylation, histone modification and expression data.
Exploiting both SNV and INDEL information, this pipe-
line increases the sensitivity and specificity of allelic ana-
lyses relative to an INDEL-agnostic approach. MEA
automates diploid pseudogenome reconstruction,
allele-specific read detection and haplotype-resolved gen-
omic track agglomeration for intuitive data visualization
and allelic imbalance detection. With one-step installation
and user-friendly file outputs, MEA can be applied with-
out relying on extensive bioinformatic expertise. Intersec-
tion of epigenomic and transcriptomic datasets using
this novel toolbox will facilitate studies of
parent-of-origin effects as well as the interplay between
genomic sequence, the epigenome and transcriptional
regulation in both humans and model organisms.

Methods
Samples used in this study
We validated our tool using previously published bisulphite-
seq data generated from inner cell mass (ICM) cells from an
F1 hybrid between mouse strains C57BL/6 J and DBA/2 J
(Wang et al. (2014) [11]). DBA/2 J differs from the reference
strain (C57BL/6 J) by 5,126,997 SNVs (roughly 1 SNV/
530 bp) and 1,019,400 INDELs, comparable to other
commonly used lab mouse strains (see Discussion).
ICM bisulphite-sequencing (GSM1386023) was comple-
mented with RNA-seq (GSM1845307–8) from ICM cells
isolated from C57BL/6 J x PWK/PhJ F1 mice as well as
ChIP-sequencing data for H3K4me3 (GSM1845274–5)
and H3K27me3 (GSM2041078–9), permissive and re-
pressive histone post-translation modifications respect-
ively. RNA-seq data from C57BL/6 J x DBA/2 J ICM
(GSM1625868) was used to test allele-specific alignment
performance of contemporary RNA-seq aligner software.
Bisulphite sequencing datasets from C57BL/6 J MII oocytes
(GSM1386019) and DBA/2 J spermatozoa (GSM1386020)
were analyzed to directly measure false-positive allele-
specific alignment rates. Processed fully grown oocyte
(DRX001583) and sperm (DRX001141–9) bisulphite-seq
were used for visualization. Processed human sperm and
oocyte WGBS was obtained from JGAS00000000006.
Adult human brain datasets were obtained as part of
the Canadian Epigenetics, Environment and Health Re-
search Consortium (CEEHRC) Network.

In silico diploid genome reconstruction
As published previously, MEA constructs a diploid pseu-
dogenome using a reference sequence (.fasta) and known
genetic variants (.vcf ) including SNVs and INDELs [16].
For samples requiring genotype phasing, MEA utilizes
SHAPEIT2 [35] and a publicly available reference panel
of haplotypes provided by the 1000 Genomes Project
[40] to output phased haplotypes. These steps generate
an in silico diploid genome containing two copies of each

chromosome, one for each parental genome. Aligning
NGS reads to a diploid genome enables the extraction of
uniquely aligned allele-specific reads, which are sepa-
rated into parent-of-origin read alignment files. An
automatically-generated index file (.refmap) enables re-
versal of coordinate alterations in non-reference allelic
read alignments caused by differential parental INDEL
lengths. This allows projection of allelic genomic tracks
back onto the original reference genome for consistent
data visualization in genome browsers (which are built
around reference genomes) and downstream analyses
over coordinate-based regions of interest.

MEA exploits widely used NGS alignment software
In order to detect allele-specific reads from RNA-, ChIP-seq
and WGBS data, we designed MEA to align reads using an
in silico pseudogenome and extract uniquely mapped reads.
This approach allows allele-specific alignment of reads con-
taining sequencing errors, which is critical for datasets with
long (100+ bp) reads commonly sequenced on Illumina se-
quencers, which have approximately 0.26–0.80% sequence
error rates [44]. This pipeline modification assures adoption
and operation of our tool well into the future as sequencing
technologies continue to extend read lengths without neces-
sarily improving error rates.

Special considerations for allele specific DNAme analysis
DNAme levels can be accurately measured genome wide
using sodium bisulphite conversion of unmethylated cy-
tosines to thymines followed by whole genome sequen-
cing (bisulphite-seq). To measure allele-specific DNAme
levels, MEA detects allelic reads and calculates the pro-
portion of cytosines and thymines at CpG dinucleotides.
To do so, MEA aligns bisulphite-seq reads to the in
silico diploid genome using the popular aligner and
methylation caller Bismark [18]. Unlike ChIP- or RNA-seq
aligners, Bismark considers cytosine to thymine mutations
(introduced during sodium bisulphite conversion) in
order to accurately align reads to a genomic sequence.
Allele-specific DNAme levels therefore reflect both genetic
and epigenetic effects: users can retroactively delineate
both effects using their original list of genetic variants.

UCSC track hubs for allelic track visualization
UCSC Track Hubs are a hierarchical file organization sys-
tem that allow combining multiple genomic tracks into
one for convenient data visualization and interpretation
[45, 32]. MEA automatically normalizes allele-specific
tracks by sequencing depth and generate corresponding
track hub database files. Using UCSC binaries (hubCheck),
we ensure the integrity of MEA-generated track hubs for
standardized visualization experiences. Additionally, we
provide scripts for the automatic computation of allelic
RNA- and ChIP-seq coverage over user-defined regions of
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interest (for example: transcription start sites, genes,
enhancers, etc.), outputting a tab-delimited table. While
RPKM- and coverage-calculating software already exist,
confounding variables are inherent to allelic analyses,
requiring custom scripting. For example, calculating allelic
RPKM values using conventional tools is complicated by
the variability in SNV and INDEL density between regions
of interest. To account for such effects, MEA’s default out-
put includes allelic read coverage for both alleles (to calcu-
late allelic imbalance) and total RPKM (to filter for
enrichment). Users can easily interpret allelic imbalance
calculations with the combination of these two metrics
(allelic read coverage and total RPKM) over their regions
of interest. In this study, VisRseq [46] was used to plot al-
lelic read coverage for RNA-seq data from human brain.

Consolidation of tool dependencies into self-sufficient
pipeline
Packaging MEA into a Docker container allows the one-
step installation of all ~ 15 dependencies, significantly re-
ducing the work required by the end-users. Simply, the
Docker container is a text file containing instructions for
installing a virtual system and setting environment vari-
ables, followed by standardized installation of each bio-
informatic dependency. Once installed through the Docker
container, MEA is immediately operational. The Docker
file is uploaded to a third-party website and available for
download (see Availability and requirements).

Software tool requirements
Users are encouraged to install MEA through Docker.
Alternatively, manual installation requires the following
software (with specific versions used during development
of MEA): Java v-1.6, Python v-2.4, Bismark v-0.15.0,
Bowtie2 v-2.2.3, BWA v-0.7.10, STAR v-2.5.1b, Tophat2
v-1.1, SAMtools v-0.1.16, Bedtools v-2.22.1, VCFtools
v-0.1.10, SHAPEIT2, bgzip v-1.1, bedGraphToBigWig
v-1.1, wigToBigWig v-4 & hubCheck.

Availability and requirements
Project name: MEA.
Project home page: https://github.com/julienrichardalbert/

MEA
One-step Installation
1. Download: https://github.com/julienrichardalbert/

MEA/raw/master/docker/Dockerfile
2. Run: $ docker build -t taskkoike:mea.1.0 /path/to/

directory-containing-Dockerfile/
Operating system(s): Platform independent
Programming language: Java, Python, Awk, Bash.
Other requirements: Docker v1.13.1 and above
License: The MIT License

Additional files

Additional file 1: Supplementary Figures S1-S5. Figure S1 False-
positive allele-specific alignments using a dataset derived from DBA/2 J
spermatozoa. To estimate the rate of false-positive errors for WGBS ana-
lyses, raw data generated from DBA/2 J mice [11] was aligned to the
MEA-generated C57BL/6 J x DBA/2 J pseudogenome and the percent-
age of C57BL/6 J-specific read alignments was scored. The expected allelic
contribution from C57BL/6 J is 0%, as these cells are of DBA/2 J origin. (a)
The percentage of reads aligning to C57BL/6 J (false-positive) and DBA/
2 J as well as the number of aligned reads that did not overlap with a
genetic variant (non-allelic) is shown. (b) The false-positive alignment
rate for each autosome, along with the number of aligned allelic read
pairs, is shown. (c) Genome browser screenshot of a representative false-
positive locus. C57BL/6 J-specific reads aligned in large stretches of false-
positive alignment regions, suggesting that the parental strain DBA/2 J from
this study was not pure. Indeed, when manually inspecting these
stretches of false-positive read alignments, experimental reads perfectly
matched the reference sequence over known DBA/2 J SNVs and
INDELs, again suggesting that “DBA/2 J” mice analyzed by Wang et al.
[11] contained C57BL/6 J sequence. Figure S2 DNA methylation dy-
namics over the Foxj3 CpG island promoter. Allele-specific DNAme
levels were calculated over 133,065 regions containing INDELs but lack-
ing SNVs (representing novel informative regions gained employing
MEA) using C57BL/6 J x DBA/2 J ICM WGBS data [11]. UCSC genome
browser screenshot of a representative region over which an allele-agnostic
pipeline calculated a total DNAme level of < 1% (dashed box). Accordingly,
the levels of allele-specific DNAme on both parental alleles, as calculated by
MEA, are < 1%. DNAme tracks of male and female germ cells [25, 26] are
also shown, as well as a track indicating the location of each informative
CpG (highlighted in blue). Figure S3 Comparison of ChIP-seq software for
allele-specific read alignment. To estimate the rate of allele-specific read
alignments and false-positive errors for ChIP-seq analyses, raw H3K4me3
ChIP-seq data generated from C57BL/6 J (fully grown oocytes) and PWK/PhJ
(spermatozoa) mice [13] was aligned to the MEA-generated C57BL/6 J x
PWK/PhJ pseudogenome and the number of C57BL/6 J- and PWK/PhJ-
specific read alignments was scored. The number of reads aligning to
C57BL/6 J and PWK/PhJ as well as the total number of allele-specific
alignments on each autosome is shown for each analysis. (a) Allele-
specific alignment using the BWA-aln algorithm. (b) Allele-specific
alignment using Bowtie2. (a-b) The expected allelic contribution for
C57BL/6 J is 100%, as these cells are of C57BL/6 J origin. (c) Allele-specific
alignment using the BWA-aln algorithm. (d) Allele-specific alignment using
Bowtie2. (c-d) The expected allelic contribution for C57BL/6 J is 0%, as these
cells are of PWK/PhJ origin. Also see Additional file 2: Table S1. Figure S4
Integration of WGBS with allele-specific RNA- and ChIP-seq over the
paternally-expressed imprinted gene Snrpn. UCSC genome browser
screenshot of the Snrpn gDMR and downstream gene using the default
MEA output. MEA automatically generates composite tracks containing
total/allele-agnostic (grey), reference (blue) and non-reference (red)
genomic tracks for visualization of allelic RNA- and ChIP-seq datasets, shown
from references [48], [47] and [13] here. An additional track indicating the
location of each informative CpG (highlighted in blue) is also included.
Notably, only the expressed paternal allele is enriched for H3K4me3 while
the inactive maternal allele is enriched for H3K27me3 and DNAme.
Figure S5 Integration of WGBS with allele-specific RNA- and ChIP-seq
data over the paternally-expressed imprinted gene Impact. UCSC
genome browser screenshot of the Impact gDMR and downstream
gene using the default MEA output for visualization of allelic data
(WGBS, RNA- and ChIP-seq), as shown in Additional file 1: Figure S4.
This locus demonstrates that a single genetic variant is apparently
sufficient to score DNAme level asymmetry between parental alleles
in an F1 hybrid. (PDF 9823 kb)

Additional file 2: Table S1. BWA and Bowtie2 allele-specific alignment
results. (XLSX 49 kb)

Additional file 3: Table S2. Human RNAseq, ChIPseq and WGBS allele-
specific alignment results. (TXT 6957 kb)

Additional file 4: Table S3. List of datasets used in this study and their
source. (XLSX 11 kb)
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